|
姓名:张照生 职称:副教授 导师类型:博导/硕导 团队名称:车能路云融合技术研究中心 邮箱:zhangzhaosheng@bit.edu.cn |
研究领域:
新能源汽车大数据和智能交通
教育经历:
2008年09月–2013年07月:清华大学大学车辆工程专业 博士学位
2004年09月–2008年06月:湖南大学车辆工程专业 学士学位
工作经历:
2020年07月– 今 : 北京理工大学机械与车辆学院 副教授
2013年08月– 2020年07月 : 北京理工大学机械与车辆学院 助理教授
学术成果:
1. Zhang Z, Ye B, Wang S, Ma Y*. Analysis and estimation of energy consumption of electric buses using real-world data[J]. Transportation Research Part D: Transport and Environment, 2024, 126: 104017.
2. Zhang Z*, Bi J, Li D*, et al. Battery defect detection for real world vehicles based on Gaussian distribution parameterization developed LCSS[J]. Journal of Energy Storage, 2024, 75: 109679.
3. Wang S, Wang Z, Pan J, Zhang Z*, Cheng X*. A data-driven fault tracing of lithium-ion batteries in electric vehicles[J]. IEEE Transactions on Power Electronics, 2024, 36(2): 1-13.
4. Zhang Z, Dong S, Li D, Wang ZP*, et al. Prediction and Diagnosis of Electric Vehicle Battery Fault Based on Abnormal Voltage: Using Decision Tree Algorithm Theories and Isolated Forest[J]. Processes, 2024, 12(1): 136.
5. Li D, Deng J, Zhang Z*, Liu P, Wang Z. Multi-dimension statistical analysis and selection of safety-representing features for battery pack in real-world electric vehicles[J]. Applied Energy. 2023, 343.
6. Li D, Deng J, Zhang Z*, Wang Z, Zhou L, Liu P. Battery Safety Risk Assessment in Real-World Electric Vehicles Based on Abnormal Internal Resistance Using Proposed Robust Estimation Method and Hybrid Neural Networks[J]. IEEE Transactions on Power Electronics. 2023, 38:7661-7673.
7. Li D, Zhang Z*, Wang Z*, Liu P, Liu Z, Lin N. Timely thermal runaway prognosis for battery systems in real-world electric vehicles based on temperature abnormality[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics. 2023, 11:120-130.
8. Wang S, Wang Z, Cheng X*, Zhang Z*. A double-layer fault diagnosis strategy for electric vehicle batteries based on Gaussian mixture model[J]. Energy. 2023, 281.
9. Zhou L, Zhang Z*, Liu P, Zhao Y, Cui D, Wang Z. Data-driven battery state-of-health estimation and prediction using IC based features and coupled model[J]. Journal of Energy Storage. 2023, 72.
10. Li D, Deng J, Bi J, Zhang Z*, Liu P*, Wang Z. Precision-concentrated battery defect detection method in real-world electric vehicles crossing different temperatures and vehicle states. IEEE Transactions on Transportation Electrification, 2023.
11. Li X, Lyu M, Li K, Gao X, Liu C, Zhang Z*. Lithium-ion battery state of health estimation based on multi-source health indicators extraction and sparse Bayesian learning[J].Energy. 2023,282.
12. Li D, Zhang Z*, Zhou L, Wang Z*, et al. Multi-time-step and multi-parameter prediction for real-world proton exchange membrane fuel cell vehicles (PEMFCVs) toward fault prognosis and energy consumption prediction[J]. Applied Energy, 2022, 325: 119703.
13. Cui D, Wang Z, Zhang Z*, et al. Driving event recognition of battery electric taxi based on big data analysis[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 9200-9209.
14. Li D, Zhang Z*, Liu P*, Zhang L*, et al. Battery fault diagnosis for electric vehicles based on voltage abnormality by combining the long short-term memory neural network and the equivalent circuit model[J]. IEEE Transactions on Power Electronics, 2020, 36(2): 1303-1315.
15. 李达, 张普琛, 林倪, 张照生*等. 基于多模型耦合的电动汽车三电系统安全性估计方法[J]. 机械工程学报, 2023, 59(12): 354-363.
教学工作:
1. 智能汽车网联技术,本科生,32学时
2. 现代汽车艺术鉴赏,本科生,32学时
3. 车辆大数据分析技术,研究生,32学时
荣誉奖励:
1.高层次应用创新人才“产学研联盟+全行业平台”培养模式探索,国家教学成果奖二等奖,2023年。
2. 新能源汽车车联网大数据系统关键技术及国家监管体系建设,北京市科技进步一等奖,2020年。
3. 数据驱动的新能源汽车管理与服务关键技术及应用,中国智能交通协会科学技术奖一等奖,2022年。
4. 基于车联网的汽车智能导航关键技术及应用,教育部科技进步一等奖,2019年
5. 网联汽车电子地图关键技术及应用,中国汽车工业科技进步特等奖,2019年。
6. 高层次应用创新人才“产学研联盟+全行业平台”培养模式探索,北京市教育教学成果奖一等奖,2022年。
7. 教育部课程思政教学名师和教学团队,2021年。
8. 能源客车安全管控关键技术及产业化,福建省科学技术进步奖二等奖,2022年。
社会兼职:
1. 电动车辆国家工程研究中心副主任
2. 新能源汽车国家监管平台负责人
3. 新能源电池回收利用专业委员会副秘书长